
PHYSICAL REVIEW E 68, 046606 ~2003!
Optical bistability involving photonic crystal microcavities and Fano line shapes
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The reflectivity of a single-channel waveguide mode upon resonantly coupling to a Kerr-active nonlinear
resonant cavity is calculated analytically, including the effects of two-photon absorption. The resonant reflec-
tivity takes the form of a Fano resonance because the solution includes linear reflections from perturbations
downstream of the localized cavity. Instead of using a Hamiltonian formulation of the scattering problem, an
intuitive set of basis states is used to expand the Green’s function of the electric field wave equation. All
resulting overlap functions describing the linear coupling between guided and localized states, and the nonlin-
ear renormalization of the material’s refractive index, are in terms of well-defined physical quantities. Although
derived in the context of photonic crystal-based waveguides and cavities, the treatment is valid for any low-loss
waveguide-resonator geometry that satisfies specific weak coupling criteria. For a cavity consisting of
Al0.18Ga0.82As, hosting a localized mode at 1.55mm with aQ of 4000 and a mode volume of 0.055mm3, we
predict the onset of bistable reflection at incident powers of;40 mW. The downstream reflections lead to
hysteresis loops in the reflectivity that are topologically distinct from conventional Lorentzian-derived loops
characteristic of isolated Fabry-Perot cavities. We provide a stability argument that reveals the unstable
branches of these unique hysteresis loops, and we illustrate some of the rich bistable behaviors that can be
engineered with such downstream sources.

DOI: 10.1103/PhysRevE.68.046606 PACS number~s!: 42.70.Qs, 42.65.Pc
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I. INTRODUCTION

Ideal photonic crystals offer the intriguing possibility o
artificially confining and routing photons in three dimensio
~3D! without radiation losses@1,2#. This is accomplished by
introducing ‘‘defects’’ into an otherwise perfectly period
photonic crystal~PC!, such that localized modes are creat
with energies that lie within the crystal’s photonic band ga
These modes can be confined on length scales comparab
the relevant photon wavelength, in 2D for line defects and
3D for fully localized microcavities. Such tight confineme
offers the potential for fabricating ultrasmall, optical ‘‘inte
grated circuits’’ in which light is piped through lossles
waveguides and filtered through the engineered coupling
these waveguides with fully localized microcavities. Yar
and co-workers have studied such waveguide-resonator
pling in a variety of geometries@3#. Add-drop filters based on
coupled waveguides and cavities have been proposed@4–7#.
Resonant tunneling of the guided mode through a locali
cavity mode has been both theoretically studied@3# and ex-
perimentally observed in a slab waveguide based phot
crystal@8#. The vertical emission of guided light via a cavi
in such planar photonic crystals has been demonstrate
Nodaet al. @9#.

The rich dispersion ofpropagatingmodes in bulk photo-
nic crystals also offers new opportunities for engineer
light propagation. Strongly dispersive parts of the band str
ture might be exploited for optical delay lines@10#, disper-
sion compensation@11#, or superprisms@12#. Engineerable
dispersion is particularly interesting in the context ofnonlin-
ear optical processes. The periodic nature of these crys
can be exploited to achieve quasi-phase-matching, and
low group velocity of strongly dispersive photonic bands h
been shown theoretically to increase nonlinear convers
efficiencies@13#.
1063-651X/2003/68~4!/046606~16!/$20.00 68 0466
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Several nonlinear studies of photonic crystals have b
reported@14#. Most of this work has been theoretical, large
because it is still difficult to fabricate good quality 3D ph
tonic crystals. However, there have been several nonlin
experimental studies of high-index-contrast 1D and 2D cr
tals that exhibit large pseudo-band-gaps@15–19#. One
scheme for engineering harmonic conversion or optical
stability exploits strong local field effects in microcavitie
Planar cavities can be formed between high-index-cont
1D photonic crystal mirrors@17# or they can be accessed v
leaky mode excitations of 2D planar photonic crysta
@20,21#. In essence, these are all nonlinear Fabry-Perot-
cavities @22#. Taking the third-order Kerr effect~intensity
dependent refractive index! as an example, it is well known
that nonlinear 1D Fabry-Perot cavities exhibit optical bis
bility at incident power densities that scale as the inve
square of the cavity’s quality factor 1/Q2. However, in many
instances it is the total optical power and not the power d
sity that is of paramount importance. The extent to wh
planar Fabry-Perot cavities can be used at low absolute p
ers is limited fundamentally by the in-plane dispersion
cavity modes. While this can be engineered to some exten
2D planar photonic crystals@21#, the ultimate means of re
ducing the absolute power levels required to observe opt
bistability is to use a fully 3D localized photonic defect sta
as the nonlinear cavity and to access it by means of a sin
mode 1D channel. One approach to achieve this goal
volves coupling conventional 1D waveguides~fiber or ridge!
to the high-order, high-Q whispering gallery modes of di
electric spheres@23#. The unique advantages offered by ph
tonic crystals in this context are~i! that the localized mode
volumes can be much smaller~less than a cubic wavelength!
than those of high-order whispering gallery modes and~ii !
that, in principle, theQ of the localized mode can be du
entirely to its coupling with the 1D channel used to probe
©2003 The American Physical Society06-1
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rather than being limited by radiation losses. Of these t
factors, the former is of much more practical relevance, si
theQ values of high-order whispering gallery modes, thou
not infinite, are known to be much larger than can
achieved in any existing photonic crystal. A calculation
volving photonic crystal-based cavities has predicted bista
switching at power levels as low as 2.6 mW~for n251.5
310217 m2/W and a wavelength of 1.55mm) @24#.

This paper reports an analytic solution for the reflectiv
of 1D PC waveguide modes incident on a nonlinear locali
defect structure, allowing for arbitrary, but linear dow
stream reflections. The 1D and 0D defect structures are e
assumed to support only single modes over the bandwidt
interest, and both the real~Kerr effect! and imaginary~two
photon absorption! parts of the third-order susceptibility ar
included. Downstream, linear contributions to the ba
ground reflectivity are included because of the nontrivial
fects they have on the nonlinear reflectivity of 2D plan
photonic crystals when excited in the vicinity of leaky mod
@21#. The formalism reported here treats both the linear a
nonlinear parts of the scattering problem rigorously, not p
nomenologically: analytic results are obtained by assum
the 1D waveguide modes are only weakly coupled to
single localized mode supported by the 0D defect struc
~the high-Q limit !. The Q value of the defect state and th
linear and nonlinear coupling terms are all expressed exp
itly in terms of matrix elements of the dielectric textur
Assuming realistic material parameters, it should be poss
to observe bistable behavior in the waveguide reflectivity
optical power levels of;40 mW, and the nature of th
bistable loops can be controlled over a broad range by ta
ing the downstream reflectivity. A simple stability argume
that clearly describes the nature of these topologically
tinct hysteresis loops is also presented.

The paper is organized as follows. In Sec. II we introdu
the formalism by deriving expressions for the linear refle
tivity and transmission of 1D waveguide modes interact
with a fully localized 0D defect cavity. Section II F genera
izes this derivation to include a nonresonant, downstre
scattering source. The nonlinear solution, including both r
and imaginary components of the system’s third-order s
ceptibility, is presented in Sec. III. Section IV contrasts t
nature of bistable reflectivity for the cases of Lorentzian a
Fano linear line shapes, and shows that bistable beha
should be achievable at power levels of the order
;40 mW. We conclude in Sec. V.

II. COUPLED WAVEGUIDE AND CAVITY
IN LINEAR REGIME

In this section we find the linear reflection and transm
sion of a 1D line defect waveguide mode in close spa
proximity to a 0D defect cavity. Our approach is based o
Green’s function solution of Maxwell’s equations express
as a wave equation for the electric field vector. The Gree
function is calculated by assuming it is given by a sum o
a set of known basis states. While the derivation assumes
waveguide and cavity are designed in a photonic crysta
should be noted that the solution is valid for any wavegui
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resonator system that satisfies the weak coupling crite
and whose resonator exhibits low radiation losses~high Q).
The formalism is therefore valid for appropriately design
planar photonic crystal circuits. In Sec. II A we define t
equations to be solved. Section II B gives a detailed disc
sion of the approximations made in defining a set of ba
states used to expand both the Green’s function and the e
tric field that solves the wave equation. In Sec. II F we ge
eralize the linear theory to include a downstream scatte
source in addition to the resonant cavity. Section II E co
tains a discussion of how this derivation differs from relat
linear reflectivity calculations in the literature.

A. Waveguide-cavity system

Starting from the macroscopic Maxwell’s equations it
straightforward to show that the electric fieldEW (rW,v) satis-
fies the following wave equation:

¹W 3¹W 3EW ~rW,v!5ṽ2DW ~rW,v!5ṽ2e t~rW !EW ~rW,v!, ~1!

where the fields are assumed to have a harmonic time de
dence, eivt; ṽ5v/c, where c is the speed of light in
vacuum, ande t(rW) is the dielectric constant distribution tha
includes the background photonic crystal, the 1D wavegu
and the localized cavity.

The transmission and reflection can be found by solv
Eq. ~1! for the electric field at the ends of the waveguidex
→` for transmission andx→2` for reflection, assuming
that a waveguide mode was launched from one end (x5
2`).

To facilitate a Green’s function solution we writee t(rW)
5ew(rW)14px0D(rW), whereew(rW) is the dielectric constan
of the photonic crystal including only the 1D line defe
waveguide, andx0D(rW)5@e t(rW)2ew(rW)#/4p describes the
change in the dielectric constant that is needed to furt
introduce a 0D cavity. Equation~1! can then be written as

@¹W 3¹W 32ṽ2ew~rW !#EW ~rW,v!54pṽ2x0D~rW !EW ~rW,v!.
~2!

Note, in the above equation, and therefore for the rest of
derivation, we assume that the cavity is side coupled to
waveguide. However, with a minor redefinition ofew(rW), the
formulation can easily be modified to treat the case o
cavity embedded within the waveguide. Figure 1 is a sc
matic illustration of the waveguide-resonator geometry
consider.

In order to simplify the notation we revert to an operat
formulation of Eq.~2!

~L2ṽ2êw!uCW &54pṽ2x̂0DuCW &, ~3!

whereL5¹W 3¹W 3 and the operatorsêw andx̂0D are defined
as ^rWu êwurW8&5ew(rW)d (3)(rW2rW8) and ^rWux̂0DurW8&
5x0D(rW)d (3)(rW2rW8), respectively, whered (3)(rW2rW8) is the
three-dimensional Dirac delta function. The vector elect
field is given by^rWuCW &5EW (rW,v).
6-2
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SinceL is a linear self-adjoint operator over real spac
the homogeneous part of Eq.~3! defines the orthonormal se
of eigenstates of a PC containing a 1D waveguide:

LufW i&5ṽ i
2êwufW i&, ~4!

where ṽ i are eigenvalues of the eigenstatesufW i&. These
eigenstates can be calculated with a variety of techniq
one common approach is numerical finite difference ti
domain~FDTD! simulations. The completeness and orthog
nality relations for these eigenstates are

(
i

ufW i&^fW i u5
1J

êw

,

^fW i u êwufW j&5d i , j , ~5!

where 1J is the unit tensor andd i , j is the Kronecker delta
function. The sum overi in Eq. ~5! is over all possible
~physical and unphysical! solutions of Eq.~4!.

We formulate a Green’s function solution to Eq.~3! based
on the full Green’s functionĜ, characteristic of a PC con
taining both the 1D and 0D defects:

uCW &5uCW hom&14pṽ2Ĝx̂0DuCW hom&, ~6!

whereuCW hom&, the homogeneous solution, is an eigenstate

the system defined by Eq.~4!. Green’s functionGJ (rW,rW8)
5^rWuĜurW8& is defined by the equation

~L2ṽ2êw24pṽ2x̂0D!Ĝ5~L2ṽ2ê t!Ĝ51J. ~7!

The solution for the electric field of the coupled waveguid
cavity PC is then reduced to finding Green’s function th
satisfies Eq.~7! and using it to solve Eq.~6!.

B. Green’s function

A simple analytic solution of this problem, valid in th
limit of weak coupling, can be obtained by expandingĜ in
terms of a restricted set of intuitively chosen basis sta
Quite generally,Ĝ can be uniquely expanded in terms of a
orthonormal basis$ufW n&% as

FIG. 1. Schematic diagram of the scattering geometry. A sing
mode high-Q cavity is side coupled to a single-mode 1D wavegu
that contains a downstream scattering center, which is the sour
Rnr in Sec. II F.
04660
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Ĝ5(
n,m

bn,mufW n&^fW mu, ~8!

where both sums extend over all states in the basis. We
sume that the cavity introduced byx̂0D would, in the absence
of the 1D waveguide, support only one 0D localized mo
This mode is at a frequencyṽ l , and is denoted by the eigen
ket ufW l&. Defining ed(rW)5e t(rW)24px1D(rW) as a dielectric
function that describes the background PC and just the
cavity, the homogeneous equation that the localized state
isfies is

LufW l&5ṽ l
2êdufW l&. ~9!

It follows that the localized state is normalized

^fW l u êdufW l&51.
We also assume that in the absence of the 0D defect,x̂1D

supports only one band of 1D waveguide modes, labeledki ,
in the frequency range of interest. The subscripti runs from
0 to `, representing the infinite number of distinct wav
vectors of the 1D guided modes, denoted byufW ki

&. These are
solutions of Eq.~4!.

The localized mode eigenstatefW l(rW) is normalized as fol-
lows:

fW l~rW !5
1

AVmode

vW l~rW !, ~10!

wherevW l(rW) is a unitless function that describes the shape
the localized eigenstate. It might be obtained from a FD
calculation, for example. The effective mode volumeVmode
is given by the normalization condition following Eq.~9!:

Vmode5E
all space

drWed~rW !uvW l~rW !u2. ~11!

To be consistent with earlier definitions of the mode volum
we assume that the maximum of the producted(rW)uvW l(rW)u2 is
scaled to unity.

For the guided mode it is natural to express the orthon
mal states as

fW ki
~rW !5

1

AAe f fL
uW ki

~rW !eikix, ~12!

whereuW ki
(rW)5uW ki

(rW1L x̂) is a unitless Bloch function peri
odic along the direction of the waveguide,L is the length of
the guide, andAe f f is an effective area of the mode. Subs
tuting this form forfW ki

(rW) into the orthogonality relation for
the guided modes, and converting the integral over all sp
to the one over a unit cell by multiplying byN5L/L, the
number of unit cells, one finds

-

of
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Ae f f5
1

LE
unit cell

drWew~rW !uuW ki
~rW !u2, ~13!

where the maximum ofew(rW)uuW ki
(rW)u2 is scaled to unity.

If these 1D and 0D defect modes all exist well within t
photonic band gap of the host PC, then it is a good appr
mation to neglect all propagating, bulk PC modes in the
pansion ofĜ. BecauseufW ki

& andufW l& are solutions ofdiffer-

ent wave equations, they are not strictly orthogon
Neglecting this for the moment, we proceed by expand
Ĝ, using Eq.~8!, in terms ofufW l& and $ufW ki

&%. Substituting
this expansion into the defining equation~7!, and projecting
onto the statêfW i u from the left andê tufW j& from the right, we
find

(
n,m

@ṽn
2^fW i u ênufW n&2ṽ2^fW i u ê tufW n&#bn,m^fW mu ê tufW j&

5^fW i u ê tufW j&, ~14!

where here the subscriptsi and j refer to any staten in our
basis. In the first term,ên5 êw if n5$ki% corresponding to a
waveguide mode, andên5 êd if n5 l , corresponding to the
0D localized mode.

Equation~14! can be written in matrix form as follows:

MJ bJTJ5TJ. ~15!

For the physical scattering problem of interest here,TJ will
have an inverse, so the expansion coefficients ofĜ are given
by

bn,m5@M 21#n,m5
Dm,n

det~M !
~16!

where det(M ) is the determinant of matrixM andDm,n is the
cofactor of elementMm,n . Directly from Eq. ~14!, the ele-
ments of matrixM are

Mm,n5ṽn
2^fW mu êwufW n&2ṽ2^fW mu ê tufW n&, ~17!

for nÞ l and

Mm,l5ṽ l
2^fW mu êdufW l&2ṽ2^fW mu ê tufW l&, ~18!

for n5 l . However, unitarity (Mki ,l5Ml ,ki
* ) requires that

ṽ l
2^fW ki

uedufW l&5ṽki

2 ^fW l uewufW ki
&* 5ṽki

2 ^fW ki
uewufW l&,

~19!

which means that there is in fact no distinction to be ma
for n5 l , except for the diagonaln5m5 l term, which does
require the distinct expression, Eq.~18!.
04660
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The derivation to this point has only been restricted by
assumption that the guide and cavity support a single m
each, and that these modes are deep within a band gap s
coupling to bulk and radiation modes can be neglected.
now make some approximations characteristic of a w
coupling regime.

In the weak coupling regime the localized and guid
eigenstates are only weakly perturbed by each other
therefore are themselves very close to being eigenstate
the full photonic crystal described byê t . Within this ap-
proximation it follows that our intuitive basis approximate
satisfies the following orthogonality relation:

^fW nu ê tufW m&5dn,m . ~20!

In the Appendix we present a further justification of th
approximation.

Using Eq. ~20!, the matrix elements ofM can be ex-
pressed as

Mm,n5ṽn
2^fW mu êwufW n&2ṽ2dm,n ~21!

for all but then5m5 l term, which is instead

Ml ,l5ṽ l
2^fW l u êdufW l&2v2. ~22!

Making use of the rigorous orthogonality condition for th
guided modes, as well as the normalization condition for
localized state, we arrive at

Mm,n5~ṽn
22ṽ2!dm,n ~23!

for n,mÞ l ,

Ml ,l5ṽ l
22ṽ2, ~24!

and

Mki ,l5Ml ,ki
* 524pṽki

2 ^fW ki
ux̂0DufW l&, ~25!

where we have used the definition ofêw , and the approxi-
mate orthogonality between the localized and guided m
in deriving Eq.~25! from Eq.~21!. The overlap functionxki ,l

0D

is defined as

xki ,l
0D 5^fW ki

ux̂0DufW l&5E drWx0D~rW !fW ki
* ~rW !•fW l~rW !. ~26!

If we adopt an indexing convention for the basis sta
where the localized mode is labeled 1, then the matrixM has
a dense first row and column followed by an infinite diagon
block.

This concludes the derivation of the Green’s function. It
valid within the weak coupling approximation, and only a
plies when the guide and cavity each support a single m
deep within a band gap defined by the surrounding PC.
6-4
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C. Guided mode expansion coefficients

The solution to the wave equation can now be expres
as

uCW &5uCW hom&1(
n,m

4pṽ2@M 21#n,mufW n&^fW mux̂0DuCW hom&,

~27!

which suggests thatuCW &5( iai(ṽ)ufW i&, where the subscrip
i can be any one of$ i %5$ l ,k1 ,k2 , . . . %. If the homogeneous
field is expressed asuCW hom&5ahufW kh

&, then the expansion
coefficient of an arbitrary waveguide mode is given by

aki
~ṽ !5ahdki ,kh

1(
m

4pṽ2@M 21#ki ,m^fW mux̂0DufW kh
&ah .

~28!

Due to the block diagonal form ofM the only nonzero
04660
d

term in the sum overm in Eq. ~28! is for m5 l . The coeffi-
cient @M 21#ki ,l is

@M 21#ki ,l5
~21! l 1kidet~Ml ,ki

!

det~M !

5

(
nÞki

~21! l 1ki~21!11n1kiMki ,ndet~Mki ,n/ l ,ki
!

det~M !
,

~29!

where the factors of (21) in the second equality are forki
. l andn,ki . As above, only then5 l term contributes to
this sum. The det(Mki ,l / l ,ki

) term represents the determina
of a diagonal matrix and is therefore given by the product
the diagonal elements. Thus Eq.~28! becomes
aki
~ṽ !5ahdki ,kh

1
~4p!2ṽ2ṽki

2 ^fW ki
ux̂0DufW l&^fW l ux̂0DufW kh

&ahPnÞ l ,ki
~ṽn

22ṽ2!

det~M !
. ~30!

The determinant ofM can be written as

det~M !5Ml ,ldet~Ml ,l !2(
iÞ l

~1! iM l ,idet~Ml ,i !5Ml ,ldet~Ml ,l !2 (
i , j Þ l

~21! i 1 jM l ,iM j ,ldet~M j ,l / l ,i !. ~31!

The subdeterminant det(M j ,l / l ,i) is nonzero only whenj 5 i due to the diagonal form of the waveguide eigenstate block inM.
The subdeterminants in Eq.~31! are just the product of the remaining diagonals and therefore we have

det~M !5P iÞ l (ṽ
i
22ṽ2)F ṽ l

22ṽ22(
iÞ l

~4p!2ṽ i
4^f

W
l ux̂0DufW i&^fW i ux̂0DufW l&

ṽ i
22ṽ2 G . ~32!

The expansion coefficient we seek is then

aki
~ṽ !5ahdki ,kh

1

~4p!2ṽ2ṽki

2 ^fW ki
ux̂0DufW l&^fW l ux̂0DufW kh

&ah

~ṽki

2 2ṽ2!

ṽ l
22ṽ22(

iÞ l
~4p!2ṽ i

4^f
W

l ux̂0DufW i&^fW i ux̂0DufW l&

ṽ i
22ṽ2

. ~33!

Since the sum overi in Eq. ~33! does not include the localized statel, we can specify( i→(ki
. This sum, evaluated by

converting the sum to an integral, yields

aki
~ṽ !5ahdki ,kh

1

~4p!2ṽ2ṽki

2 xki ,l
0D x l ,kh

0D ah

~ṽki

2 2ṽ2!

ṽ l
22ṽ22

i4p2ṽ3L

ṽg

@x1kv ,l
0D x l ,1kv

0D 1x2kv ,l
0D x l ,2kv

0D #

~34!

as the final expression for the expansion coefficient.
6-5
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D. Localized mode amplitude

Although not needed to calculate the reflection and tra
mission of the guided mode in the linear response regi
the amplitude of the localized mode is important when
riving the nonlinear response in the cavity. The amplitu
coefficient of the localized mode is, from Eq.~27!,

al~ṽ !5(
m

4pṽ2@M 21# l ,m^fW mux̂0DufW kh
&ah . ~35!

The only nonzero term in the sum is againm5 l . The re-
quired element ofM 21 is

@M 21# l ,l5
det~Ml ,l !

det~M !
5

P iÞ l~ṽ i
22ṽ2!

det~M !
, ~36!

where det(M ) is given in Eq.~32!.
After evaluating the sums in the denominator as in

preceding section, we find

al~ṽ !5
4pṽ2x l ,kh

0D ah

ṽ l
22ṽ22

i4p2ṽ3L

ṽg

@x1kv ,l
0D x l ,1kv

0D 1x2kv ,l
0D x l ,2kv

0D #

.

~37!

E. Reflected and transmitted fields

The transmitted field is found by evaluating the fields
x51`. Only the waveguide modes carry energy far aw
04660
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from the localized defect, hence we need only sum over
ki states in our basis:

^x→`uCW &5(
ki

aki
~ṽ !^x→`ufW ki

&. ~38!

The sum overki is similar to the one that appeared in th
denominator above; however, now there is an exponen

factor eikix coming from the eigenstatêrWufW ki
&. Assuming

that both the Bloch function of the eigenstate and the ove
integrals vary slowly with the in-plane momentumki , the
integral reduces to

L

2p

1

2ṽ ṽg
E dkiṽki

2 F eikix

ki2kv2 i e
2

eikix

ki1kv1 i eG
5

L

4pṽ ṽg

@2p iu~x!eikvxR~kv!

12p iu~2x!e2 ikvxR~2kv!#, ~39!

whereu is the step function andR(kv) is the residue of the
integral evaluated atkv . Carrying out the integrals, we find
^x→`uCW &5F 11

i8p2ṽ3L

ṽg

xkv ,l
0D x l ,kv

0D

ṽ l
22ṽ22

i4p2ṽ3L

ṽg

@x1kv ,l
0D x l ,1kv

0D 1x2kv ,l
0D x l ,2kv

0D #
G ah^x→`ufW kv

&, ~40!

where we have taken the in-plane momentum of the homogeneous field to be1kv , a forward propagating guided mode.
The field atx→2` is

^x→2`uCW &5^rWuCW inc&1^rWuCW re f&

5(
ki

aki
~ṽ !^x→2`ufW ki

&

5ah^x→2`ufW kv
&1

i8p2ṽ3L

ṽg

x2kv ,l
0D x l ,kv

0D

ṽ l
22ṽ22

i4p2ṽ3L

ṽg

@x1kv ,l
0D x l ,1kv

0D 1x2kv ,l
0D x l ,2kv

0D #

ah^x→2`ufW 2kv
&. ~41!
6-6
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Invoking a mirror symmetry of the 0D defect structu
along the waveguide axis, we can set the overlap integ
involving 1kv equal to those involving2kv . That is,

^fW 2kv
ux̂0DufW l&5^fW 1kv

ux̂0DufW l&. The transmission and re
flection coefficients are then

T~v!5
^x→`uCW &

ah^x→`ufW 1kv
&

511

i8p2ṽ3L

ṽg

xw,l
0Dx l ,w

0D

ṽ l
22ṽ22

i8p2ṽ3L

ṽg

xw,l
0Dx l ,w

0D

~42!

and

R~v!5
^x→2`uCW re f&

ah^x→2`ufW 2kv
&

5

i8p2ṽ3L

ṽg

xw,l
0Dx l ,w

0D

ṽ l
22ṽ22

i8p2ṽ3L

ṽg

xw,l
0Dx l ,w

0D

, ~43!

where the subscriptw simply denotes the waveguide mode
frequencyṽ.

Before generalizing this solution to include downstrea
reflections and a third-order nonlinear response, we com
our derivation in the linear response regime with those p
viously published by others.

Equations~43! and ~42! are, respectively, the reflectio
and transmission of a guided mode that is weakly couple
an otherwise lossless resonant cavity. The line shap
Lorentzian,

R~ṽ !5
i ṽG

ṽ l
22ṽ22 i ṽG

, ~44!

with a linewidth of

G5
8p2ṽ2Luxw,l

0D u2

ṽg

. ~45!
04660
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Note that theQ of the resonance is given byQ5ṽ l /G.
Our result is a direct solution of the wave equation a

has involved approximations that are physically justified
the guide and cavity are weakly coupled. If the denomina
is appropriately factorized, Eq.~44! has exactly the same
form as in Ref.@3#, with the exception that our overlap func
tion x l ,w

0D is well defined in terms of overlap integrals involv
ing eigenmodes and the dielectric perturbation that defi
the 0D cavity. In the Hamiltonian formulation of this scatte
ing problem, the corresponding coupling term is given

terms of the difference between a dielectric functioneo(rW)
‘‘associated with the unperturbed Hamiltonian,’’ and the to

dielectric functione t(rW). However, the ‘‘unperturbed’’ di-

electric functioneo(rW) is ill defined, since there is no uniqu
dielectric function that at once has the waveguide and lo
ized modes as exact solutions.

Our derivation actually sheds some light on the resolut
of this ambiguity. If Eqs.~17! and ~18!, as well as the or-
thogonality condition of Eq.~20!, are used in the remainde
of the development, without invoking the unitarity conditio
Eq. ~19!, then the final solution does not conserve flu
Within the weak coupling approximation then, it is necess
to adopt Eq.~19! to conserve flux. When comparing ou
unitary result with that derived in Ref.@3#, it becomes clear

that eo(rW) can be taken aseither our ew(rW) or our ed(rW) in
order to obtain a physically well-defined coupling matrix e
ement.

F. Nonresonant background

We now modify the geometry in order to treat the mo
general situation when there is some downstream pertu
tion of the 1D waveguide that introduces a frequenc
dependent~linear! background reflectivityRnr , which we
assume is known. This background reflectivity is incorp
rated in a manner consistent with our Green’s function f
mulation of the scattering problem: Fan@25# has previously
used a transfer matrix approach to include the effects
downstream reflection on linear resonator-waveguide c
pling.

The full expression for the field in the waveguide pl
cavity system, before taking the asymptotic limit tox5
2`, which yields the reflectivity, and before any of th
sums overki are carried out, is given by
uCW &5(
ki

aki
ufW ki

&1al ufW l&

5ahufW kh
&1

~4p!2ṽ2(
ki

ṽki

2
ufW ki

&^fW ki
ux̂0DufW l&^fW l ux̂0DufW kh

&ah

ṽki

2 2ṽ2
14pṽ2ufW l&^fW l ux̂0DufW kh

&ah

ṽ l
22ṽ22(

ki

~4p!2ṽki

4
^fW l ux̂0DufW ki

&^fW ki
ux̂0DufW l&

ṽki

2 2ṽ2

, ~46!
6-7
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which can be written in operator notation as

uCW &5ahufW kh
&1

ĜoV̂ufW l&^fW l uV̂ufW kh
&ah1ufW l&^fW l uV̂ufW kh

&ah

ṽ l
22ṽ22^fW l uV̂ĜoV̂ufW l&

.

~47!

The operator V̂, with matrix element ^fW l uV̂ufW ki
&

54pṽki

2 ^fW l ux̂0DufW ki
& ~note ṽkh

5ṽ), is defined to conve-

niently group factors associated with the driving term in
Green’s function solution. The operatorĜo is defined as
Ĝo5(ki

ufW ki
&^fW ki

u/(ṽki

2 2ṽ2). In the regime where contri

butions from nonguided modes of the 1D waveguide PC
be neglected, the sum overki can be taken to be the sum ov
all eigenmodes of the waveguide PC. Therefore the oper
Ĝo is just the bare Green’s function of the 1D waveguide P

From Eq.~47! it is evident that the full electric field de
pends on a bare Green’s functionĜo and a corresponding
homogeneous fieldufW kh

&, both characteristic of the exac
structure of interest, minus the local mode whose reson
coupling is being sought. To generalize our previous res
we therefore seek the homogeneous solutions and co
sponding bare Green’s function characteristic of the
waveguideincluding the downstream perturbation, butex-
cluding the perturbation responsible for the local mode
interest to us. These will be substituted in place of
Green’s function and the homogeneous field presently u
in Eq. ~47!. This approach is valid as long as the nonreson
nt

rc
e-

e-
he
co

ne

e

04660
n

or
.

nt
lt,
re-

f
e
ed
nt

source does not alter the operatorx̂0D. Therefore, the non-
resonant source must be external to the cavity.

The new Green’s function and homogeneous field
found as follows. Assume the source of the nonreson
background is described by some susceptibilityx̂nr . The
wave equation is

~L2ṽ2êw!uCW nr&54pṽ2x̂nruCW nr&. ~48!

The subscriptnr serves to make it explicit that this is th
electric field of a waveguide PC with a nonresonant sour
not the full electric field as in Eq.~47!. The Green’s function
solution is

uCW nr&5~114pṽ2Ĝnrx̂nr!uCW h&. ~49!

Defining N̂54pṽ2Ĝnrx̂nr , Eq. ~49! becomes

uCW nr&5~11N̂!uCW h&. ~50!

Furthermore, the Green’s function for the full wavegui
plus nonresonant perturbation is related to the Green’s fu
tion of the 1D waveguide by Dyson’s equation,

Ĝnr5~11N̂!Ĝo . ~51!

The nonresonant background can then be included in
solution by simply substitutingufW kh

&→(11N̂)ufW kh
& and

Ĝo→(11N̂)Ĝo in Eq. ~47!. The field in the coupled
waveguide-cavity system, with some nonresonant ba
ground present, is then
uCW &5~11N̂!ahufW kh
&1

~11N̂!ĜoV̂ufW l&^fW l uV̂~11N̂!ufW kh
&ah1ufW l&^fW l uV̂~11N̂!ufW kh

&ah

ṽ l
22ṽ22^fW l uV̂~11N̂!ĜoV̂ufW l&

. ~52!
a

ne
wing
ibu-
ctra
At a spatial locationrW, upstream from the nonresona
scattering source—that is,x,xnr , wherexnr is the spatial
coordinate at which the nonresonant scattering sou
begins—the operatorN̂ acts on an eigenstate of the wav
guide in the following way:

^rW~x,xnr!uN̂ufW ki
&5Rnr~ṽki

,x!fW 2ki
~rW !, ~53!

where Rnr(ṽki
,x) is a complex scalar function ofki and

positionx. This is nothing more than the definition of a r
flection coefficient for the guided mode reflecting from t
nonresonant source. In the present context we are only
cerned with the value of the reflection coefficient atx5xo ,
the location of the resonant cavity; thus we defi
Rnr(ṽki

,xo)5Rnr(ṽki
).

With this definition of the operatorN̂, the evaluation of
the sums, and of the fields atx52`, follows the approach
already presented. The result, for the reflectivity of a guid
e

n-

d

mode coupled viax̂0D to a resonant cavity and scattered by
downstream perturbation with reflectivityRnr(ṽ), is

R~v!5Rnr~ṽ !

1

i8p2ṽ3L

ṽg

@11Rnr~ṽ !#2xw,l
0Dx l ,w

0D

ṽ l
22ṽ22

i8p2ṽ3L

ṽg

@11Rnr~ṽ !#xw,l
0Dx l ,w

0D

,

~54!

which has the simple form of a renormalized Lorentzian li
shape coherently added to a nonresonant background. O
to the interference of the downstream and resonant contr
tions, the line shape of the resonance in the reflection spe
is generally Fano-like.

Finally, from Eq. ~52!, the amplitude of the localized
mode is found to be
6-8
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al~ṽ !5
4pṽ2x l ,kh

0D ah@11Rnr~ṽ !#

ṽ l
22ṽ22

i8p2ṽ3L

v g̃

xw,l
0Dx l ,w

0D@11Rnr~ṽ !#

.

~55!

This amplitude will be important for the nonlinear discussi
in the following section.

III. COUPLED WAVEGUIDE AND CAVITY
IN NONLINEAR REGIME

In this section we show how the above solution may
extended to include a third-order nonlinear response of
host material.

A general nonlinear polarizationuPW NL& is included by
modifying Eq.~3! as

~L2ṽ2êw!uCW &54pṽ2x̂0DuCW &14pṽ2uPW NL&. ~56!

The third-order degenerate nonlinear polarization is given
real space by

PW NL~rW,v!5 3
2 xJ (3)~rW,2v;v,2v,v!

3EW ~rW,v!EW * ~rW,v!EW ~rW,v!, ~57!

and by grouping terms it can be seen that the net phys
effect of this nonlinearity is to introduce an intensity depe
dent susceptibility

xJNL~rW !5 3
2 xJ (3)~rW !:EW ~rW !EW * ~rW !. ~58!

Note thatxJ (3) is in general complex. The real part leads to
intensity dependent refractive index, while the imagina
part quantifies the amount of two-photon absorption.

In the weak coupling limit it is quite reasonable to assu
that the only mode that will have enough intensity to indu
a substantial nonlinear susceptibility will be the localiz
mode, when excited near resonance. Thus to a good app
mation we can take

xJNL~rW !5 3
2 xJ (3)~rW !:fW l~rW !fW l* ~rW !ual~ṽ !u2

5 3
2 xJ (3)~rW !:vW l~rW !vW l* ~rW !

ual~ṽ !u2

Vmode
. ~59!

From Eq.~59!, xJNL(rW) will, like xJ0D(rW), be localized in the
vicinity of the defect mode, but it will not have exactly th
same shape. In this formulation, it’s dynamic behavior
determined completely by the localized mode amplitu
al(ṽ). Equation~56! can thus be written as

~L2ṽ2êw!uCW &54pṽ2$x̂0D1x̂NL@ ual~ṽ !u2#%uCW &.
~60!
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Treatingual(ṽ)u2 as a parameter inx̂NL, as one might in
an iterative solution to the nonlinear equation~60!, one can
formally replacex̂0D with x̂0D1x̂NL in all of the linear de-
velopment presented above. Because the new expres
largely preserves the local nature ofx̂0D , the discussion of
which matrix elements can be neglected due to the w
coupling approximation carries over, and further approxim
tions can be made due to the relative size ofx̂0D andx̂NL. In
particular, when considering different matrix elemen

^fW nux̂NLufW m&, if n andm are both 1D guided modes, then th
resulting overlap function describes a third order polarizat
generated from the evanescent tail of the guided mode. T
is certainly negligible, given our approximation that only th
field in the cavity is strong enough to generate a signific
nonlinear polarization. If one ofn or m is a localized mode
and the other a guided mode, then the overlap function r
resents a nonlinear modification of the coupling to the loc
ized mode and an associated modification of the reson
linewidth. While this is relevant, in the present analysis
only retain the largest effect of the nonlinearity, the dire
renormalization of the resonant frequency of the bound m
through matrix elements ofx̂NL that involve the localized
state twice.

With this assumption, the only element ofM that is al-
tered from those of the purely linear derivation is theMl ,l

element, which becomesMl ,l5ṽ l
22ṽ224pṽ2x l ,l

NL , and
this modification ofM is the only change that is encountere
in the linear analysis. Hence, the nonlinear reflectivity
given by

R~v!5Rnr~ṽ !

1
i ṽG„11Rnr~ṽ !…2

ṽ l
22ṽ224pṽ2auQu22 i ṽG„11Rnr~ṽ !…

,

~61!

where we have writtenx l ,l
NL as auQu2. The coefficienta is

defined as

a5
1

Vmode

3

2E drWvW l* ~rW !•xJ (3)~rW !vW l~rW !vW l* ~rW !vW l~rW !, ~62!

which serves to separate the renormalized material resp
from the dynamical variableQ5al(ṽ)/AVmode, associated
with the localized mode amplitude.

Thus the modifiedMl ,l element results in an extra facto
in the denominator of the reflectivity that renormalizes t
localized mode resonant frequency by an amount prop
tional to the intensity of the electric field in the cavity. Reca
that formally we had to assume that the local mode am
tude was a parameter in our original equations of motion
order to obtain Eq.~61!. To find the self-consistent value~s!
of al(ṽ) that satisfy the full set of equations at a give
frequency and incident field strength, we need to solve
6-9



al~ṽ !5
4pṽ2x l ,w

0Dah@11Rnr~ṽ !#

ua ~ṽ !u2 i8p2ṽ3L
, ~63!
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ṽ l
22ṽ224pṽ2a

l

Vmode
2

ṽg

xw,l
0Dx l ,w

0D@11Rnr~ṽ !#
o
f
e
is

e

d

r
m

e
s
a

or
ex
ed

tic
uld
h-
ity.
ur

ult

be
ce,
re-

id-

ty
the

ird-

ty

ed

nt
ity
.

t

which is obtained by incorporating the modifiedMl ,l matrix
element in the derivation in Sec. II F.

Taking the amplitude squared of Eq.~63! results in a cu-
bic equation whose roots are the values ofal(ṽ) that self-
consistently solve our third-order nonlinear equation~63!.
These solutions are used in Eq.~61! to find the reflection
spectra in the presence of the nonlinearity.

Finally, it is useful to express the amplitude of the hom
geneous driving field,ah , in terms of the average power o
the incident waveguide mode. The total electromagnetic
ergy of the incident waveguide mode within one unit cell

W5
1

2Eunit cell
drW@ew~rW !uEW h~rW !u21uBW h~rW !u2#

5E
unit cell

drWew~rW !uEW h~rW !u2, ~64!

where EW h(rW)5ahfW kh
(rW). The time for the energy to mov

from one unit cell to the next isL/( ṽgc), and therefore the
power carried by the incident waveguide mode isP

5 ṽgcW/L or

P5
ṽgc

L
uahu2E

unit cell

1

Ae f fL
ew~rW !uuW kh

u2drW

5
ṽgc

L
uahu2. ~65!

Thus, ah5ALP/ ṽgc. Furthermore, from Eq.~45!, x l ,w
0D

5AṽgG/L8p2ṽ2, so Eq.~63! for al(ṽ) can be reexpresse
in terms of simple physical parameters as

al~ṽ !5
ṽA2GP/c@11Rnr~ṽ !#

ṽ l
22ṽ224pṽ2a

ual~ṽ !u2

Vmode
2 i ṽG„11Rnr~ṽ !…

.

~66!

Equations~61! and ~66! represent the final result of ou
derivation. For a given incident power, the local mode a
plitude in the cavity is obtained by solving Eq.~66! and the
corresponding local field strength isQ5al(ṽ)/AVmode.
Equation ~61! then yields the reflectivity of a waveguid
mode, in a 1D waveguide PC, that interacts with a nonre
nant scattereranda localized nonlinear cavity that supports
single bound mode in the frequency range of interest.

Losses due to the nonlinear process of two-photon abs
tion are included in our formalism through a compl
xJ (3)(rW). If required, linear material losses could be includ
04660
-

n-

-

o-

p-

by assuming a complex linear susceptibility. In any realis
structure there would be some radiation losses that wo
cause a finite resonant linewidth even in the limit of vanis
ingly small coupling between the waveguide and the cav
This could be included in the formalism by including in o
basis another set of modes with a continuous dispersion~in
addition to the 1D waveguide modes treated above! and al-
lowing them to couple to the localized mode. The net res
would be an additional contribution to the linewidthG→G
1Go in the denominator of Eq.~61!, with no corresponding
change to the coupling@G in the numerator of Eq.~61!
would remain unchanged#. This too is consistent with the
linear result obtained using the Hamiltonian approach@3#.

Finally, the general formalism presented above can
used to treat any order of nonlinear polarization. In practi
the approximations needed to render a simple analytical
sult, when possible, will depend on the nonlinearity cons
ered.

IV. DISCUSSION

A. Nonlinear response

For the purpose of illustrating the nonlinear reflectivi
properties of realistic PC waveguide structures, we adopt
set of material parameters summarized in Table I. The th
order susceptibility corresponds to a Al0.18Ga0.82As host at a
wavelength of 1.55mm. We have neglected the order-uni
renormalization to the bulk value ofxJ (3) due to the nonuni-
form localized state. That is, over the extent of the localiz
mode we approximate a' 3

2 x (3)(1/Vmode)*drWuvW l(rW)u4

' 3
2 x (3)/eavg

2 , whereeavg is the average dielectric consta
of the cavity region. A typical photonic crystal-based cav
could have an air to material filling fraction of roughly 30%
This leads toeavg58.11 for an Al0.18Ga0.82As index of 3.34.
We focus on 18% AlxGa12xAs since it has been shown tha
it should have the greatest ratio of nonlinear refractionn2 to
two-photon absorption,b at 1.55mm and is therefore of
particular interest for optical switching applications@26,27#.
Our value for the real part ofx (3) (5.1310211 esu) can be
found from the calculations and data presented in Ref.@26#.

TABLE I. Material parameters used in simulations.

Parameter Value Units

4pa 1.46310211 esu
Vmode 0.055 mm3

ṽ l
2p

1.55
mm21

Q 4000 None
6-10
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When the background, nonresonant reflectivity is ignor
the linear and the nonlinear reflectivity in this scattering g
ometry are essentially identical to the nonlinear transmiss
that has been studied extensively by others in the contex
nonlinear 1D Fabry-Perot cavities@22,28#. Of significance
here are the absolute powers required to observe bist
behavior in this PC geometry where the localized mode v
ume can be less than a cubic wavelength. We start by il
trating that Fabry-Perot-like bistable behavior can be
served at power levels as low as 40.0 mW in the struct
described in Table I. The nontrivial influence of includin
downstream reflections will be considered next.

Figure 2 shows reflectivity spectra in the absence of
nonresonant background reflection for incident wavegu
mode powers of 0.0021 mW~dashed curve! and 15.4 mW
~solid curve!. The dashed curve is the linear result that o
curs when the peak field excited within the localized def
causes a negligible shift of the bound mode’s resonant
quency. As the incident power is increased, the nonlin
term renormalizes the cavity mode resonance by an am
proportional to the renormalized susceptibility in the cav
region. As the energy approaches the resonance from be
the field strength in the cavity increases, which causes a n
linear increase in the effective refractive index in the cav
region because the third-order susceptibility of AlxGa12xAs
is positive at 1.55mm. The increase in the refractive inde
decreases the resonant mode frequency, pulling it tow
the incident frequency which in turn further enhances
coupling to the cavity. This positive feedback increases
slope of the rising edge of the reflectivity spectrum as co
pared to the linear result. As the frequency extends bey
the renormalized resonant mode frequency the field am
tude in the cavity decreases and the mode shifts back tow
its linear frequency. This negative feedback keeps the re
nant frequency close to the incident guided mode freque
resulting in a~relatively! shallow slope on the falling edge o
the resonance.

The most interesting consequence of the Kerr-indu
resonant frequency shift is the onset of bistability at hig
powers. Figure 3 plots reflection spectra for incident pow
up to 132.0 mW. In the current example the reflectivity b

FIG. 2. Reflection spectra for an incident mode power of 0.00
mW ~dashed! and 15.4 mW~solid!. The plot at 0.0021 mW exactly
coincides with the purely linear calculation, the plot of Eq.~44!.
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comes multivalued when the power is increased ab
;40.0 mW. This low threshold for bistability is a result of
large local field confined to a volume that is less than a cu
wavelength.

The curve of circles in Fig. 4 is a plot of the reflecte
power as a function of incident power at a fixed energy
the low energy side of the resonance. As the incident po
is increased, the reflected power gradually increases a
the bottom branch of the curve until it reaches about 1
mW. At this point, the reflected power jumps to around
mW due to the instability of the interior branch of the curv
Decreasing the incident power from above 155 mW, the
flected power follows the upper branch of the curve, dro
ping to minimal reflected power at about 55 mW. The d
matic variation from low to high reflected power, whic
corresponds to a switching from near zero to unity reflec
ity, would be ideal for nonlinear switching application
However, this simulation does not include the imaginary p
of x (3), which accounts for two-photon absorption. Wh

1 FIG. 3. Reflection spectra for incident mode powers of 2.2 m
~dotted!, 44.0 mW~dashed!, 87.6 mW~solid!, and 131.6 mW~dash-
dotted!.

FIG. 4. Hysteresis loop for Lorentzian resonance at an energ
6447.8 cm21 ~circles!. The stars and diamonds show the effect
two-photon absorption~TPA! when the TPA coefficient is assume
to be 0.34 cm/GW and 1.46 cm/GW, respectively. The arrows
dicate the bistable loop.
6-11
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this is included, the corresponding hysteresis loops bec
smaller since the absorption reduces the peak reflecti
Using a bulk two-photon absorption~TPA! coefficient for
Al0.18Ga0.82As of 0.34 cm/GW @27#, the hysteresis loop
width is reduced by'14 mW ~the curve of stars in Fig. 4!.
A theoretical prediction suggests that the TPA coefficient
Al0.18Ga0.82As should be 1.46 cm/GW@26#. When this is
used the resulting hysteresis loop is given by the diam
curve in Fig. 4. We can conclude that as long as the T
coefficient is not much larger than the latter value, TPA do
not quench bistability in Al0.18Ga0.82As at this wavelength.
However, TPA can significantly alter the hysteresis loop i
is greater than the former, experimentally observed value

Now consider the impact of including a nonresona
downstream scattering source, with a reflectivityRnr
50.6e2 ip/2. Figure 5 shows the reflectivity spectra in th
case for the same set of incident powers as in Fig. 3. A
the Lorentzian case, as the power is increased the chan
the refractive index of the material shifts the resonant f
quency to lower energy. However, the way in which t
shifted resonance coherently adds to the stable nonreso
background results in drastically different line shapes tha
the Lorentzian case. When bistability occurs it is possible
loops to appear in the spectra, and these loops result in d
tically different hysteresis loops. The reflectivity,
6447.8 cm21, as a function of incident power is shown
Fig. 6. This bistable loop is very different from that of th
Lorentzian line shape. In this example the threshold po
for the bistable loop has decreased significantly. The ‘‘o
switching occurs at 75 mW while the ‘‘off’’ switching occur
at only 32 mW. As is evident in Fig. 5, for high inciden
power the nonlinear reflectivity can be close to unity ove
broad range of frequencies. This translates into distinct o
put power characteristics in the hysteresis loops. In this
ample, at high incident power, the reflected power becom
almost linear with the incident power~Fig. 6!. Figure 7 illus-
trates the effect of TPA in this particular example of a no
resonant reflecting source. In this example the nonlinear
sorption process significantly quenches the unity reflectiv

FIG. 5. Reflection spectra, in the presence of a downstre
nonresonant scattering sourceRnr , for an incident mode power o
2.2 mW ~dotted!, 44.0 mW~dashed!, 87.6 mW~solid!, and 131.6
mW ~dash-dotted!.
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portion of the reflection spectra. The entire upper branch
the hysteresis loop is therefore significantly reduced in ma
mum power due to the absorption process.

It is therefore evident that it is important to include su
nonresonant sources in any model of the nonlinear per
mance of coupled waveguides and cavities. On the o
hand, nonresonant sources could be designed into the s
ture in order to engineer desired reflection spectra and h
teresis loops. The reflected field producing the Fano l
shape is a result of interference between the sharp reso
field and the nonresonant background field that is slow
varying in both amplitude and phase. The nature of the Fa
like hysteresis curves depends strongly on the amplitude
phase of the downstream reflectivity, hence there is a

m
FIG. 6. Bistability of Fano reflectivity line shape a

6447.8 cm21. Arrows indicate the bistable loop that the syste
follows as the incident power is increased from zero and then
creased again. Circles~o!, crosses~x!, and asterisks~a! depict the
three distinct solutions to the cubic equation found from Eq.~66!.
The ‘‘o,’’ ‘‘x,’’ and ‘‘a’’ labels introduced in this caption are for
relating each solution to Fig. 10.

FIG. 7. Hysteresis loops showing effect of two-photon abso
tion for Fano resonances. The curve of circles is the result in
absence of TPA while the diamonds and asterisks are with a
coefficient of 1.46 cm/GW and 0.34 cm/GW, respectively. Energy
6447.8 cm21.
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diversity of behaviors that can be generated. We intend
address this point in subsequent publications.

We now turn to a stability analysis of the solutions invol
ing nonzero downstream reflections in order to verify t
hysteresis loop that the system will follow.

B. Stability analysis

The bistable response of 1D Fabry-Perot cavities is o
discussed in terms of a graphical solution that clearly reve
the three allowed solutions in the multivalued reflectiv
regime, as well as the stability of these solutions. Below
generalize to the Fano-line-shape case, the graphical
proach used in Refs.@22,28# to analyze the stability of the
solutions in the Lorentzian limit.

Defining a control parameterb5bo1b28ual u2, the expres-
sion for the reflectivity in the Lorentzian case becomes

R5
i ṽG

b2 i ṽG
, ~67!

and thereforebo5ṽ l
22ṽ2 is the detuning from resonance

the linear limit, andb28 is a factor representing the Ke
effect. PlottinguRu2 as a function ofb2bo , one obtains the
solid curve in Fig. 8. Sinceb2bo is proportional toual u2,
the x axis can be taken to beual u2 in arbitrary units. This
curve illustrates that, for some initial detuning from res
nance, asual u2 is increased the system is pulled into res
nance, as described above.

Using expression~63! for al to eliminate the resonan
frequency dependence from the reflectivity, we arrive at
following independent relationship betweenR and the inci-
dent power:

R5Rnr1
iG~11Rnr!

4pṽ lx l ,w
0D

al

ah
. ~68!

FIG. 8. Graphical solution for the Lorentzian line shape. So
curve is independent of power and at a constant energy
6447.8 cm21 @Eq. ~67!# and the dashed curves are independen
frequency and at a constant incident power@Eq. ~68! of 55 mW
~curveA), 87.6 mW~curveB), and 153.6 mW~curveC).
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In the Lorentzian limitRnr50, this can be used to obtain th
following power-dependent relationship betweenb andR:

uRu25
b2bo

b2uahu2
, ~69!

where b25(24pṽ l
2a/Vmode)u4pṽ lx l ,w

0D /Gu2

5b28u4pṽ lx l ,w
0D /Gu2. For each value ofuahu2, Eq. ~69! de-

fines a linear relationship betweenuRu2 and b2bo , where
the slope depends on the incident power. The lines foruahu2
corresponding to 55, 87.6, and 153.6 mW are plotted
dashed lines in Fig. 8. The intersection of these lines with
curve are the allowed solutions to the problem.

The stability of the solution can be found from the fo
lowing considerations@22#. For the passive optical system
considered here, the rate of change of the control param
b is proportional to the difference between its driving fun
tion and its steady state value. Therefore,b satisfies the fol-
lowing dynamical equation:

t
db

dt
5b28ual u22b1bo , ~70!

wheret is the cavity response time. Perturbingb from its
steady state value byb5b̄1db(t), one arrives at the fol-
lowing equation fordb(t):

t
ddb~ t !

dt
1S 12b2uahu2

duRu2

db D db~ t !50, ~71!

which has solutionsdb(t)5exp@2(g/t)t#, where g is the
expression in the parentheses of Eq.~71!. For uRu2/b2bo
,duRu2/d(b2bo) it is easy to see thatg is less than 0.
Therefore the solutions todb(t) grow exponentially and
thus these solutions are unstable. ForuRu2/b2bo
.duRu2/d(b2bo) the solutions are stable. This analysis i
dicates that the negative slope branch in the hysteresis
of Fig. 4 is unstable. Let us now turn to the analysis of t
Fano line shape.

When there is a nonzero downstream reflection, Eq.~67!
easily generalizes to

R5Rnr1
i ṽG~11Rnr!

2

b2 i ṽG~11Rnr!
, ~72!

but Eq.~69! does not generalize. This is because the nonre
nant contribution introduces a phase shift between the
flected field and the field in the cavity. This can be seen fr
Eq. ~68!, from which it is clear thatuRu2 is not directly pro-
portional to ual u2 in the Fano case. Therefore, the graphic
solution cannot be expressed in a two-dimensional plot
uRu2 versusual u2, because such a plot lacks any informati
about the phase of the two field components.

The graphical solution in this more general situation
quires a four-dimensional plot of the real and imaginary pa
of R as a function of real and imaginaryal . We have verified
that the three mutual intersections of the four surfaces~real
and imaginaryR at constant frequency~independent of

of
f
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power!, and constant power~independent of frequency! in-
deed yield a graphical solution of the nonlinear reflectiv
problem. However, the stability arguments for the Fano c
would have to be generalized from a comparison of slope
the graphical solution to the comparison of two-dimensio
gradients. Instead of proceeding in this fashion we introd
a simpler stability argument that is essentially the same a
the Lorentzian limit.

If one usesuR2Rnru2 instead ofuRu2 in Eq. ~68!, then
there is a power-dependent proportionality tob2bo ,
namely,

uR2Rnru25
b2bo

b2
nruahu2

, ~73!

where b2
nr5b28u4pṽ lx l ,w

0D /G(11Rnr)u2. A power-
independent relationship for the functionuR2Rnru2 is ob-
tained directly from Eq.~72!. Plotting the latter curve a
6447.8 cm21 and the former at incident powers of 35, 66.
and 74.7 mW, we arrive at the graph shown in Fig. 9.
contrast to the Lorentzian case, this diagram doesnot repre-
sent a full graphical solution for the reflectivity since o
cannot extract the reflectivity from a knowledge ofuR
2Rnru2. However, this is a graphical solution touR2Rnru2.
Upon solving the full cubic equation for an incident power
66.3 mW and plottinguR2Rnru2 rather thanuRu2, we pro-
duce Fig. 10. The solutions shown in this figure correspo
exactly to the crossing points of Fig. 9. The solid vertical li
at an energy of 6447.8 cm21 illustrates this equivalence
Therefore each of the three solutions found graphically
Fig. 9 can be directly associated with one of the three dist
solutions to the cubic equation derived from Eq.~66!. The
three distinct values ofuR2Rnru2 arising from the three dis
tinct analytic solutions to the cubic equation are labeled
‘‘o,’’ ‘‘x,’’ and ‘‘a’’ in Fig. 10. The o, x, and a solutions
correspond to the circle, cross, and asterisk solutions for
reflected power that results from the same three solution
the cubic equation. There is therefore a clear link betw

FIG. 9. Graphical solution for the Fano line shape. Solid cu
is independent of power and at a constant energy of 6447.8 c21

and the dashed curves are independent of frequency and at a
stant incident power@Eq. ~73!# of 35 mW ~curve A), 66.3 mW
~curveB), and 74.7 mW~curveC).
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the graphical solutions in Fig. 9 and the numerical hystere
loop in Fig. 6. This is possible sinceRnr is single valued. A
stability argument of the three graphical solutions in Fig
can then be used to investigate the stability of the th
branches in the hysteresis loop.

Assuming the same feedback relaxation equation give
Eq. ~70!, the equation fordb(t) in the Fano case becomes

t
ddb~ t !

dt
1S 12b2

nruahu2
duR2Rnru2

db D db~ t !50, ~74!

which again has the solutionsdb(t)5exp@2(gnr/t)t#. It fol-
lows that solutions in the region for whichuR2Rnru2/b
2bo,duR2Rnru2/d(b2bo) are unstable while solution
when the opposite is true are stable. Since these unst
solutions correspond to the internal branch of the Fa
derived hysteresis loop in Fig. 6 we conclude that this int
nal branch is unstable and thus the loop follows the p
depicted by the arrows in Fig. 6. We feel that our approa
greatly simplifies earlier stability arguments for hystere
loops associated with Fano resonances, approaches tha
lied on absorption within the nonlinear material@29#, or phe-
nomenological parameters@30#.

Finally, one of the most striking features of these Fan
derived hysteresis loops is the fact that different branche
the curve can cross each other. These crossing points in
of output power versus input power do not correspond
degenerate solutions. This is because each solution still h
unique phase with respect to the incident field. It is n
enough that the amplitude of the electric field~proportional
to power! for each solution is the same, but their phases m
also be equal to render the solutions degenerate. These c
ing points therefore represent no critical switching point
the system. In fact, the stability analysis above indicates
one of the two solutions is unstable and therefore there

e

on-

FIG. 10. Plot ofuR2Rnru2 as a function of energy for an inci
dent power of 66.3 mW. The arrows point to the three disti
sections of the curve that originate from the three distinct soluti
to the cubic equation derived from Eq.~66!. The dashed is labeled
‘‘o’’ corresponding to the solutions depicted by circles in Fig. 6. T
solid and dash-dot are, respectively, labeled x and a, and corres
to the crosses and asterisks in Fig. 6. The solid vertical line is a s
at 6447.8 cm21 and illustrates that these numerical solutions are
same as the graphical ones found from curveB in Fig. 9.
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only one allowed solution at these crossing points. Never
less, as is evident from the example presented here, bis
loops resulting from Fano resonances can have significa
different properties than the usual Lorentzian-derived loo

V. CONCLUSIONS

In this paper we derived a simple analytic solution for t
reflection of a guided mode that interacts with a Kerr-act
nonlinear resonant cavity and a downstream nonreso
scattering source. A second-order wave equation for the e
tric field is solved using an intuitive expansion of the as
ciated Green’s function and the field, rather than solving
equivalent first-order equations for both the electric a
magnetic fields, as has been reported by others@3,6,5#. All of
the relevant linear and nonlinear coupling mechanisms
clearly and explicitly associated with well-defined overl
integrals involving electric field Bloch states and dielect
perturbations. The approximations required to obtain t
simple analytic solution are made clear. The simple form
the solution avoids the need for iterative solutions. Inste
an independent cubic equation for the localized mode am
tude is solved first, and the result is used to obtain the refl
tivity for a given incident power.

For moderately high-Q (Q;4000) resonant cavities with
mode volumes of the order of 0.05mm3, which should be
attainable using various PC fabrication technologies,
model predicts Kerr-related bistable behavior at incid
power levels of;40 mW in Al0.18Ga0.82As. Although two-
photon absorption reduces the maximum range of the hys
esis loops, the reduction is estimated to be only a few p
cent.

The presence of nonresonant downstream scatte
sources in the waveguide results in Fano-like resonant
tures in the reflection spectra. In the nonlinear regime
coherent superposition of the stable background and po
dependent resonant contribution result in topologically d
tinct hysteresis loops~in contrast to the more commo
Lorentzian situation!. We generalized conventional stabilit
arguments in order to determine which branches of th
hysteresis loops are stable.

From this work we conclude that photonic crystals ma
from Al0.18Ga0.82As offer the potential for realizing bistabl
optical functionality at power levels of the order of 40 mW
without significant impairment due to two-photon abso
tion. It is also clear that nonresonant, downstream reflect
can significantly modify the nature of the bistable reflect
ity. This fact may be used to obtain more flexibility in d
signing nonlinear devices, but regardless, it shows that th
reflections should not be overlooked in analyzing the non
ear behavior of waveguides that interact with resonant lo
ized cavities.
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APPENDIX: ORTHOGONALITY OF BASIS

In this appendix we discuss how the orthogonality relat
of Eq. ~20! is intuitively justified within the weak coupling
limit.

First, if n andm correspond to guided mode eigenstat
then Eq. ~20! can be written as ^fW ki

u êwufW kj
&

14p^fW ki
ux̂0DufW kj

&5dki ,kj
. Since the first term on the left

hand side of this expression is the rigorous orthogonality
the guided mode eigenstates, it follows that^fW ki

ux̂0DufW kj
&

50. The overlap integral̂fW ki
ux̂0DufW kj

& describes the direc

renormalization of a single guided eigenstate~if n5m
5ki), or the direct coupling between two guided eigensta
~if n5ki and m5kj ), by the presence of the cavity. In th
weak coupling regime this will be negligible and it is ther
fore valid to neglect it. An analogous argument involving t
localized state results in̂fW l ux̂1DufW l&50, which is also valid
within our weak coupling limit.

If either n or m corresponds to a guided mode eigenst
and the other to the localized mode, then there are
equally acceptable ways to expand Eq.~20!: ^fW ki

u êwufW l&

14p^fW ki
ux̂0DufW l&50 and ^fW ki

u êdufW l&14p^fW ki
ux̂1DufW l&

50. Multiplying each by the appropriate factor ofṽ2 and
subtracting, one obtainsṽki

2 ^fW ki
ux̂0DufW l&2ṽ l

2^fW ki
ux̂1DufW l&

50, where the unitarity condition has been used to elimin
the factors containinge. Therefore, the assumption o

^fW ki
u ê tufW l&50 in a physical system requires th

ṽki

2 ^fW ki
ux̂0DufW l&2ṽ l

2^fW ki
ux̂1DufW l&50. While this constraint

is not quite as simple as the ones above, it is still very use
Consider the unitarity condition of Eq.~19!. Using the

definition of bothêw and êd and some simple algebra it i
possible to derive the following expression:

~ṽki

2 2ṽ l
2!

4p
^fW ki

u ê tufW l&5ṽki

2 ^fW ki
ux̂0DufW l&2ṽ l

2^fW ki
ux̂1DufW l&.

~A1!

Due to the regularity of the function̂fW ki
u ê tufW l&, it follows

from the above that on resonanceṽki

2 ^fW ki
ux̂0DufW l&

2ṽ l
2^fW ki

ux̂1DufW l&50. This on-resonant result, which is in

dependent of the value of the function^fW ki
u ê tufW l&, is simply

a consequence of unitarity. In the weak coupling regime
are only concerned with the response of the system n
resonance, since the resonance is relatively narrow in
quency. The smooth continuous nature of the funct

^fW ki
u ê tufW l& verifies that ṽki

2 ^fW ki
ux̂0DufW l&2ṽ l

2^fW ki
ux̂1DufW l&

is sufficiently small near resonance. This simply expres
that near resonance the response of the structure is d
nated by guided-localized mode coupling, while away fro
resonance this coupling mechanism becomes of the orde
the weak mode renormalization process, and thus we ca
neglect one with respect to the other.
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We can therefore conclude that our orthogonality con
tion given in Eq.~20! is a valid approximation within the
weak coupling limit. Intuitively, it corresponds to neglectin
the direct renormalization of the guided and localized mo
with respect to the dominate localized-guided mode coup
process.

Furthermore, for a particular waveguide-resonator str
ture the deviation of the functions^fW kj

ux̂0DufW ki
&,

^fW l ux̂1DufW l&, and ṽk
2 ^fW k ux̂0DufW l&2ṽ l

2^fW k ux̂1DufW l& from

i i i

u

C

u

us

u

nd

h

a-
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zero represents a measure of the validity of our solution
that structure. If the deviation from zero of these functions
much smaller than the value of the dominant coupli

mechanism quantified bŷfW l ux̂0DufW ki
&, then one can con-

clude that the system lies within our weak coupling lim
Note, the first two functions, being directly dependent on
spatial separation of the guide and cavity, represent a sp
constraint, while the final expression corresponds to a c
straint in frequency detuning.
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